
Evaluation of Fault-Tolerant Policies Using
Simulation∗

Anand Tikotekar1, Geoffroy Vallée1, Thomas Naughton1, Stephen L. Scott1, Chokchai Leangsuksun2

1Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

{tikotekaraa, valleegr, naughtont, scottsl}@ornl.gov
2Louisiana Tech University

Ruston, LA 71272
{box}@latech.edu

Abstract— Various mechanisms for fault-tolerance (FT) are
used today in order to reduce the impact of failures on application
execution. In the case of system failure, standard FT mechanisms
are checkpoint/restart (for reactive FT) and migration (for
pro-active FT). However, each of these mechanisms create an
overhead on application execution, overhead that for instance
becomes critical on large-scale systems where previous studies
have shown that applications may spend more time checkpointing
state than performing useful work.

In order to decrease this overhead, researchers try to both
optimize existing FT mechanisms and implement new FT policies.
For instance, combining reactive and pro-active approaches in
order to decrease the number of checkpoints that must be
performed during the application’s execution. However, currently
no solutions exist which enable the evaluation of these FT
approaches through simulation, instead experimentationsmust
be done using real platforms. This increases complexity andlimits
experimentation into alternate solutions.

This paper presents a simulation framework that evaluates
different FT mechanisms and policies. The framework uses
system failure logs for the simulation with a default behavior
based on logs taken from the ASCI White at Lawrence Livermore
National Laboratory. We evaluate the accuracy of our simulator
comparing simulated results with those taken from experiments
done on a 32-node compute cluster. Therefore such a simulator
can be used to develop new FT policies and/or to tune existing
policies.

I. I NTRODUCTION

High performance computing systems grow rapidly, with
today’s high-end systems moving from tera-scale to peta-
scale class platforms. As these systems increase in size,
the likelihood of component failure increases greatly, which
ultimately leads to higher application level failures (typically
parallel applications). applications).

A standard policy to address this issue is to periodically
checkpoint applications and in the event of a failure restart
the application. A more recent policy is to pro-actively avoid
failures, moving parts of the application away from nodes for
which a failure has been predicted. This latter approach allows
one to avoid the impact of system failures on application
execution. Unfortunately, it assumes failures are predictable
which may not be the case, depending on applications and the

∗ ORNL’s work was supported by the U.S. Department of Energy, under
Contract DE-AC05-00OR22725.

execution platform characteristics. There is no one-size-fits-
all solution. For instance, today’s efficient checkpoint/restart
schemes may be unsuitable for peta-flop machines with their
massive node counts [1] [2]. Yet, it is possible that other solu-
tions may be worse, thus making a particular checkpoint/restart
scheme the only feasible solution for such a system. The point
is that it is impossible to arrive at any conclusion without a
proper evaluation and comparison with candidate solutions.

A new challenge for researchers is therefore to find ap-
propriate fault tolerance policies for specific applications and
execution platforms. This document presents a step in that
direction, presenting a simulator for FT policies. This simula-
tor allows one to evaluate the impact of various FT policies
on application execution, based on characteristics of boththe
execution platform (e.g. number of nodes), FT mechanisms
(e.g. their overhead), and applications (e.g. execution time).

This presented framework provides a tool for research into
fault tolerance based on simulation, which removes the added
complexity associated with experimentation incurred by work
done using a real platform.

The remainder of this paper is organized as follows. We
present the background of the proposed research work in the
Section II including various FT policies that are generallyused
on real systems. In Section III, we describe our simulator,
followed by an analysis in Section IV of different FT policies
based on failure logs from Lawrence Livermore National
Laboratory (LLNL). Section V shows the validation of the
simulator. Lastly, Section VI presents our conclusion.

II. BACKGROUND

A. Standard Fault Tolerance Policies

The main goal of a FT policy is to reduce the loss of an
application’s work time or reduce the execution overhead in
the presence of failures. In this section we explain the various
facets of a few standard FT policies, which were used to guide
the implementation of our simulator.

We make the following assumptions in order to represent
a particular FT policy: (i) An HPC system has an unknown
MTBF (Mean Time Between Failures), i.e., all failures occur
according to some unknown value for MTBF; (ii) an applica-
tion completes afterK failures.



Let the lost work time or execution overhead be represented
by L, and the application’s original run time be equal ton ∗
mtbf .

1) Exclusive Reactive Fault Tolerance:The central idea of
the exclusive reactive fault tolerance policy is to periodically
checkpoint applications. The main parameters of this policy
are: (i) the checkpoint interval; (ii) the associated overhead
for the application or checkpoint latency; (iii) the “time to
checkpoint”, i.e., the average time to complete one checkpoint;
and (iv) rollback time due to application failure. Efficient
checkpoint/restart schemes try to minimize the overhead for
the application by parallelizing the checkpoint writing process.
However, the longer it takes to complete a checkpoint, the
higher the probability a failure will occur during this state
saving period. This policy also depends on the availabilityof
nodes to restart a failed application. Further, restart latency (in
the case of synchronized checkpoint/restart) is another source
of application overhead.

Let η be the associated overhead to the application for a
single checkpoint andγ be the time to checkpoint.

z = mtbf − ⌊
mtbf

interval + γ
⌋ ∗ (interval − η) (1)

L = ∞ if interval > mtbf (2)

L =

n
∑

i=1

z for interval < mtbf (3)

The Equation 3 is only a partial result for the lost time. The
Equation 3 characterizes lost time forn MTBFs. The lost
time L can lead to more lost time ifL is greater thanmtbf .
Therefore,L can be approximated to a multiple of MTBF,
which can be then evaluated using Equation 3.

2) Exclusive Proactive Fault Tolerance:The basic tenet
of the exclusive proactive fault tolerance policy is to predict
impending system failures wherever possible and avoid ap-
plication failures by moving running processes/threads away
from the compute node that is about to fail. The policy has a
high overhead to applications when failures are not predicted
since applications restart from scratch (no checkpoint/restart
mechanisms). The policy depends on failure prediction accu-
racy, migration overhead for the application, false alarm rate,
and availability of spare nodes for migration.

The following example illustrates such a policy. Let the
prediction accuracy be equal to 50% (i.e. 50% of the predicted
failures are false prediction) and g(x) gives the number of
failures that are correctly predicted.

L =

k−1
∑

i=1

g(i) ∗ mtbf ∗ p (4)

where1 ≤ g(x) ≤ n − 1 and where1 ≤ x ≤ k − 1 (5)

In this case, an application will only complete its execution
if n consecutive failures with MTBF equal tomtbf are
predicted. The probabilityp that n consecutive failures are

predicted correctly out of2m failures that are subject to a
50% prediction accuracy can be calculated as follows:

p =

(

m − n

n

)

∗ (m − n + 1)

(

2m

m

) wherem ≥ n (6)

3) Reactive and Proactive Fault Tolerance:The fundamen-
tal premise behind the reactive and proactive fault tolerance
policy is to acknowledge that all failures cannot be predicted,
and therefore this policy combines (i) periodic checkpoint(re-
active), and (ii) failure prediction with migration (proactive).
For failures that are predicted, applications can be migrated
thus saving the rollback time and restart latencies. For failures
that cannot be predicted, applications are restarted from the
last checkpoint thereby reducing re-computation by avoiding
starting from scratch.

The execution overheadL in this case can be represented in
much the same way as in the case of “exclusive reactive FT”.
The difference is that the MTBF gets stretched based on the
failure prediction accuracy. Lets assume the failure prediction
inaccuracy to bex (the accuracy is1 − x)

mtbf ′ =
1

x
∗ mtbf (7)

The Lost time or execution overheadL can then be represented
using Equation 3.

4) Proactive Triggered Reactive Fault Tolerance:The
proactive triggered reactive fault tolerance policy is used when
applications are only checkpointed when failures are predicted.
This is an alternative when migration overhead exceeds the
checkpoint/restart overhead. In that case, the application loses
n∗x/100∗mtbf for the firstn MTBFs atx percent prediction
inaccuracy.

t =
x

100
(8)

Therefore, the total lost time is a geometric series with rate
as t.

L = mtbf ∗

∞
∑

i=1

n ∗ ti (9)

L = mtbf ∗
nt

1 − t
(10)

B. Related Work

Our proposed research on simulation of FT policies has
two basic components. So we present related work on both
the components. Many simulation studies [3] [4] [5] evaluate
the impact on metrics such as job turnaround time, average
wait time, and average slowdown time, for various parallel
job scheduling policies in the presence of system failures,but
fault tolerant (FT) mechanisms/policies are not explored to
find their impact on the same metrics. The authors in [6]
propose a parallel simulator to compare various techniques
for task allocation to multiple processors where processors are
subject to failures. Although this study evaluates the metrics



such as job execution times, the objective of the authors is
not to evaluate the impact of fault tolerant mechanisms. There
have been efforts to study software dependability or failure
behavior through simulation. Such efforts [7] [8] inject or
simulate software or hardware failures that affect software to
evaluate the impact of various fault-tolerant strategies.Oliner
et al. in [9] study the performance implications of periodic
checkpoints through simulation. Oliner et al. use LLNL’s real
system logs for their study. Our goal is to study and evaluate
different FT policies and not just periodic checkpoint. Zhang
et al. [10] [11] study performance metrics such as resource
utilization, job slowdown, for scheduling strategies and not for
fault-tolerant mechanisms.

The research on FT policies can be broken down into four
policies as discussed in Section II-A. The research in reactive
FT policies ranges from fault tolerant MPI [12], to fault toler-
ant schedulers [13], to projects likedéjà vu [14] and numerous
checkpoint/restart schemes [15], [16] The research in proactive
FT policies can be broken down into failure prediction and
migration. Hardware failure prediction is studied well in the
literature [17], [18], [19] ranging from node failures to disk
failures to IPMI logs. In [20], the authors explain how critical
events can be predicted for pro-active management. In [20]
Chakravorty and Kale explain how pro-active fault tolerance
based on processor failure information can lead to migration
of tasks from faulty processors to healthy nodes. Software
rejuvenation along with checkpointing has been used in [21]to
minimize the application execution time pro-actively. TheFT
policy of proactive combined with reactive policy is relatively
less explored. But in [22] they describe how pro-active fault
management can be used to decide whether to migrate the
process or whether to checkpoint it.

III. S IMULATION FRAMEWORK

Figure 1 shows the architecture of the simulator and how
a particular simulation is performed. In our framework, the
simulated system is defined by a set ofschemas. For instance,
different schemas define the application, the compute nodes,
the FT policy and the failures (each individual schema are
explained in detail in later sections). Doing so, it is possible
to easily customize the simulation, modifying the different
parameters of each schema. It is also possible to fine-tune
the selected FT policy.

Each individual schema contains information about a spe-
cific element of the simulation. The simulator finds all the
needed information via the schemas. As described in the next
section, the configurable parameters could be the number of
applications, number of nodes per application, total nodes,
spare nodes, repair time, various overheads (such as check-
point/migration/latencies), and various FT policies (such as
proactive/reactive and failure logs).

A. Application Schema

Listing 1 describes theapplication schemaas used by the
simulator. Node count is the actual processor count of that
particular application. We currently assume that only one

Fig. 1. Global Architecture of the Simulation Framework

application process/thread is executed on each node and that
the node count of an application remains static throughout
its lifecycle. For instance, in the case of proactive FT, we
let the application fail if there is no spare node available
for migration. One can easily extend the simulator to allow
stacked processes by introducing a “stacked overhead” in the
FT policies schema (please see Listing 3).

Listing 1. Application schema as needed by the simulator

<App schema>
<A p p l i c a t i o n ID> . . .< / A p p l i c a t i o n ID>
<Execu t i on t ime> . . .< / Execu t i on t ime>
<Node coun t> . . .< / Node coun t>

< / App schema>

B. Node Schema

The node schemaas shown in Listing 2 stores information
such as the number of spare nodes. The availability of spare
nodes is critical for application’s overall overhead as we will
see in Section IV.

Listing 2. Node schema as needed by the simulator

<Node schema>
<T o t a l nodes> . . .< / T o t a l nodes>
<Ac t i ve nodes> . . .< / Ac t i ve nodes>
<Spare nodes> . . .< / Spare nodes>

< / Node schema>

C. Fault Tolerance Policies

The FT policies schemashown in Listing 3 lists all sup-
ported FT policies by the simulator. The schema also describes
the different overheads associated to each policy. For instance,
the overheads in the schema could be “checkpoint overhead”
or “migration overhead” or “Restart latency”. The event ele-
ment specifies the event on which a particular policy should be
invoked. For instance, reactive policy should only be invoked
when the failure event occurs. Similarly, the proactive policy
must be invoked when failure is predicted.



Listing 3. FT policies schema as needed by the simulator

<FT p o l i c i e s schema>
<p o l i c y>

<Name>R e a c t i v e< / Name>
<e v e n t> . . .<e v e n t>
<Overhead1> . . .< / Overhead1>
<Overhead2> . . .< / Overhead2>
<Overhead3> . . .< / Overhead3>

< / p o l i c y>
<p o l i c y>

<Name>P r o a c t i v e< / Name>
<e v e n t> . . .<e v e n t>
<Overhead1> . . .< / Overhead1>
<Overhead2> . . .< / Overhead2>

< / p o l i c y>
< / FT p o l i c i e s schema>

D. Failure Logs

The failure log schemagives the details about each failure.
Specifically, it contains information about failure event,i.e.,
the duration of the event (Mean Time To Recover - MTTR),
the node affected, whether the failure was predictable. The
predictability information is used by policies such as the
proactive one.

Listing 4. Failure logs schema as needed by the simulator
<F a i l u r e l o g s schema>

<F a i l u r e even t>
<s t a r t t i m e i n f o> . . .< / s t a r t t i m e i n f o>
<end t ime i n f o> . . .< / s t a r t t i m e i n f o>

< / F a i l u r e even t>
<node f a i l u r e i n f o>

<node i d> . . .< / node i d>
<MTTR i n f o> . . .< /MTTR i n f o>

< / node f a i l u r e i n f o>
<p r e d i c t a b l e>< / p r e d i c t a b l e>

< / F a i l u r e l o g s schema>

E. Simulator’s Algorithm

The algorithm is based on the discrete event simulator
principle and the implementation is Java based. The events in
the simulator can be: (i) a failure event (based on failure logs),
(ii) the completion of a running application, (iii) a node that
comes back online after a failure. The simulation algorithm
performs a series of steps when each of the above events
occurs. The algorithm begins with a global schema as its input.
The algorithm only receives a failure event at the start. If there
is no failure event, events like “Repair event” and “completion
of an application” are not triggered. However, a trace of the
events is created in order to track event dependences when a
failure is triggered by the simulator. The failure event comes
from the failure logs schema, where the failure events are
chronologically ordered.

Details about actions generated for each events are detailed
in the following paragraphs.

TABLE I

INFORMATION FROM LLNL’ S LOGS

Parameter Description
Failure time Time when failure occurred
Downtime (MTTR)Downtime of a node
Node id Failed node information

1) Failure Event: (i) extract information about the failed
application from the application schema and the failure logs
schema, (ii) check event dependences (such as “repair of
nodes”), (iii) reorder events in chronological order, (iv)release
jobs in queue and calculate overheads (such as loss of work
time) based on past events, (v) execute the FT policy, (vi)
update node lists for the failed applications.

2) Repair Event:(i) add node(s) to free/spare list.
3) Completion Event:(i) release the nodes held by job to

free/spare list
4) Actions Based on FT Policy:(i) query schema for

support, (ii) calculate overheads listed in the FT policies
schema, for example calculate checkpoint overhead if the FT
policy is reactive or calculate migration overhead if the policy
is proactive.

IV. CASE STUDY USING LOGS FROMLLNL

In this section we evaluate standard FT policies listed in
Section II-A against the failure logs from LLNL’s ASCI white
system. This case study describes the different set of results
obtained from our simulator. Please note that even though the
results are specific to the system in evaluation, we show how
we can use this information to select a FT policy for a given
set of parameters. This case study shows in more details how
our simulator is working.

We simulate four space-shared parallel MPI jobs, each hav-
ing 125 processes in a 512 node simulated cluster environment
with 12 spare nodes. We use 1 month failure data starting from
7/15/2000 to 8/15/2000 from LLNL’s ASCI White system
logs. The default time for each simulated job is 744 hours.
The system logs contain the following information as shown
in Table I

The information in the LLNL logs do not contain fail-
ure prediction information. However, the failure prediction
information is critical for evaluating proactive FT policies
as described in Figure 3. Since this is our case study we
experiment with different sets of prediction accuracies. For
instance, 50 percent prediction accuracy means that about 21
failures are predicted in our 1 month failure data containing
a total of 41 failures. Although the results differs based on
which particular failures are predicted, it is of no particular
importance to our discussion. This is due to the fact that we
evaluate failure logs as they are, and it is fair to assume that a
specific system may have such failure prediction distribution.
We therefore randomly select number of predicted failures
based on the required prediction accuracy during the given
period of the LLNL logs.



TABLE II

VALUES FORPARAMETERS FOR THE FIRST SET OF RESULTS

Parameter Value
Number of applications running 4, each with 125 nodes
Total active nodes 500
Spare nodes 12
Time to Checkpoint 50 minutes /checkpoint
Checkpoint overhead to application50 minutes/checkpoint
Migration overhead 1 minute/migration
False alarm rate not set
MTTR original values in logs

Next, we show the application failure distribution pertaining
to LLNL logs (during the given period).

Fig. 2. Job Failure Statistics for 1 Month

A. First Set of Results

The results in Figure 3 to Figure 6 are based on the set
parameters as shown in Table II

The parameters like checkpoint overhead and migration
overhead are based on our knowledge of the existing overheads
on our real platforms.

The set of results from Figure 3 to Figure 6 carry the same
overhead for “Time to checkpoint” and “Checkpoint overhead
to the application”. Efficient checkpoint/restart schemesallow
checkpoint to work in parallel with the computation after a
certain overhead (which is overhead to the application). In
the next set of results we change the overheads and analyze
its effects on application execution. The migration overhead
is typically small compared to checkpoint overhead for large
systems. This is due to the fact that only one process or one
OS or one virtual machine needs to be migrated for a predicted
failure (typically no synchronization between nodes is needed).
We shall change this parameter also in the next set of results.

From Figure 3, it is clear that the availability of the four
running applications depend on the failure prediction accuracy
and also when the failure occurs in its lifetime. This is evident
in the case of 60 percent and 70 percent predication accuracy.
Although 70 percent prediction accuracy should mean better
results, it may not necessarily be the case. The simple reason
is that if an application fails toward the end, it loses more time
since there is no checkpoint. For a researcher, informationsuch
as in Figure 3 is quite critical. After selecting the statistically

significant sample of logs, the researcher is able to see the
impact of the FT policy selected. The researcher can form
an educated opinion as to what sort of prediction accuracy
he/she must have in order to keep the execution overheads
down. For instance, a conclusion from Figure 3 could be stated
as follows: for longer running applications on our specific
system, the prediction accuracy should be higher than 60
percent in order to keep the overhead below 50 percent for
all applications.

Fig. 3. Application Execution Overhead for Exclusive Proactive FT Policy
(Based on a 1 Minute Migration Overhead)

Figure 4 shows a case where the FT policy is exclusively
reactive. Application overhead in this case depends on the
number of checkpoints and the overhead per checkpoint.
Figure 4 shows that the best results are obtained when the
checkpoint interval is not too low and not too high. When
the checkpoint interval is too low (like 2 hours), most part
of the overhead comes from the checkpoint overhead to the
application. When the checkpoint interval is too high (like256
hours), most part of the overhead comes from the computation
rollback time. An example conclusion to be drawn from
Figure 4 can be stated as follows: for our specific logs the
interval between 8 hours to 64 hours is necessary in order to
keep the application overhead below 20 percent.

Fig. 4. Application Execution Overhead for Exclusive Reactive FT Policy
(Based on a 50 Minutes Checkpoint Overhead

Figure 5 shows the results for a proactive combined with



reactive FT policy for application 1. This policy includes
periodic checkpointing and failure prediction with migration.
Figure 5 shows that the best results are obtained when the pre-
diction accuracy is over 60 percent and checkpoint intervalis
between 16 and 32. A sample conclusion to be drawn from this
can be stated as follows: For our specific logs, the prediction
accuracy should be over 60 percent and checkpoint interval
should be between 16 and 32 in order to keep the overhead
below 20 percent. Now if we compare our conclusions for the
three different FT policies, we can see that they are consistent.
For instance, we would not like to keep checkpoint interval of
2 or 4 hours for 70 percent prediction accuracy because the
overhead is more than that of exclusive proactive FT policy.
Further, for the same 70 percent accuracy we also would not
set very high checkpoint intervals because the advantage will
be nullified in the form of rollback time.

Fig. 5. execution overhead for Proactive and reactive FT policy for Job 1

Figure 6 describes the results for application 2. The results
are similar to Figure 5. The results for application 3 and 4 are
not shown for the sake of brevity.

Figure 7 shows yet another FT policy. This policy as
described earlier uses checkpoints as triggered by failure
prediction. The downside of this policy is the checkpoint
overhead but the plus side is that rollback time is limited.
Comparing Figure 7 with Figure 3, we can see that the impact
is approximately the same, although it may not be necessarily
the same. In these two case, while the checkpoint overhead
(at 50 minutes/checkpoint) is much larger than migration
overhead (1 minute/migration), the rollback time is much
lesser in pro triggered FT policy than Fully proactive FT
policy.

It is now clear that without the simulator a researcher
having access to a failure prediction mechanism and check-
point/restart scheme would need a lot more time and effort just
to try out various FT policies to ensure the minimum overhead.
Moreover, he/she may have to settle for a sub-optimal FT
policy without some kind of a simulator.

Fig. 6. Execution Overhead for Proactive and Reactive FT Policy for Job 2

Fig. 7. Execution Overhead for Proactive Trigger Reactive FT (Based on a
50 minutes Checkpoint Overhead)

B. Second Set of Results

In this section we set different values for our parameters
than for the first set of results. The new values for the
parameters appear in Table III. Specifically, we decreased the
checkpoint overheads 5 times and increased the migration
overhead 50 times.

The impact of increasing the migration overhead even
by 50 times is not significant when we compare Figure 8
with Figure 3. This implies that migration takes place less
frequently depending on the failure prediction accuracy. The
conclusion from this result is that with less frequent failures,

TABLE III

VALUES FORPARAMETERS FOR THE SECOND SET OF RESULTS

Parameter Value
No of applications running 4 each with 125 nodes
Total active nodes 500
Spare nodes 12
Time to Checkpoint 10 minutes /checkpoint
checkpoint overhead to application10 minutes/checkpoint
Migration overhead 50 minute/migration
False alarm rate not set
MTTR original values in logs



migration overhead is an insignificant quantity compared to
the rollback time lost. Approximately all the overhead comes
from the rollback time.

Fig. 8. Application execution overhead for exclusive proactive FT policy
(Based on a 50 Minutes Migration Overhead)

Comparing Figure 9 with Figure 4, we can see the impact
of the checkpoint overhead. In this set of results, checkpoint
overhead was reduced to 10 minutes from 50 minutes in
the first set of results. The reduction in execution overhead
is strong for interval between 2 and 16. For instance, the
execution overhead for job 1 in Figure 4 for 2 hours interval
is 4 times more than that of Figure 9 with the same interval.
This is expected since low interval means more number of
checkpoints and therefore more checkpoint overhead to the
application. The conclusion drawn from this result is that
checkpoint overhead is a significant quantity when the interval
is low.

Fig. 9. Application Execution Overhead for Exclusive Reactive FT Policy
(Based on a 10 Minutes Checkpoint Overhead)

We now show the impact of the MTTR (Mean time to
repair) on application’s execution overhead. Until now, we
have been using original MTTR values from the LLNL logs.
we now describe the impact of modified MTTR on the
applications. Table IV shows the static parameters for this
operation. Specifically, we set 32 hours for our checkpoint
interval and 50 percent as our prediction accuracy.

Figure 10 shows a scenario where there are no spare nodes.
As can be seen from the figure, as the MTTR increases the
execution overheads generally increase. The reason for drop
of execution overhead in some cases is not surprising since

TABLE IV

VALUES FORPARAMETERS FOR THE SECOND SET OF RESULTS

Parameter Value
Time to Checkpoint 10 minutes /checkpoint
checkpoint overhead to application10 minutes/checkpoint
Migration overhead 50 minute/migration
checkpoint interval 32 hours
Failure prediction accuracy 50 percent

it depends on the timing of the “Repair event” of the node.
For example, the reduced MTTR values disrupt the original
chronological order of the “Repair event”. This causes node
lists of applications to change and therefore their failurepat-
tern changes. The drop in one application’s execution overhead
should be offset by increase in the other. But the trend overall
is that of increasing execution overhead for increasing MTTR
values. (Please note that while only MTTR parameter is varied,
the results show the total impact, for instance these results also
contain checkpoint, migration, rollback overhead)

Fig. 10. Application Execution Overhead for Exclusive Reactive FT Policy
(No Spare Nodes)

Fig. 11. Application Execution Overhead for Exclusive Reactive FT Policy
With 4 Spare Nodes

Figure 11 shows the impact of MTTR reduction when the
number of spare nodes is increased to 4. The increase in the
number of spare nodes reduces the execution overhead since
applications have to wait less for the “Repair event”.

To summarize, we performed the case study based on
LLNL’s ASCI white system using our simulator. We described
two sets of results. The first set of results evaluated different



TABLE V

PARAMETERS FOR REAL PLATFORM AND SIMULATION

Parameter Value
Node count 16
Time to Checkpoint 90 seconds /checkpoint
checkpoint overhead to application70 seconds/checkpoint
Restart latency 1 minute/restart
Migration overhead 1 minute/migration
Failure prediction accuracy simulated

standard policies against the set of parameters shown in Ta-
ble II. The best results are obtained when we used “Proactive
combined with reactive FT policy”. The second set of results
were meant for tuning the various parameters and evaluated
exclusive proactive and exclusive reactive FT policies against
the set of parameters shown in Table III. Further, the secondset
of results also evaluated a “proactive combined with reactive
FT policy” with reduced values of MTTR and with different
number of spare nodes. This completes our case study for the
simulator. In the next section we present the validation of our
simulator.

V. VALIDATION OF THE SIMULATOR

We evaluated “exclusive reactive FT”, “proactive combined
with reactive FT” policies on real platform. Our platform con-
sists of a 40 nodes cluster, with each node having 768MB of
memory. For our reactive FT policy, we use BLCR checkpoint
module. For our proactive FT policy we use virtual machines,
specifically Xen [23], and their live migration [24] capability.
For our real platform, we do not have failure logs or failure
statistics, and therefore we simulate failures to evaluatethe
impact of FT policies.

We executed different configurations of the HPCC bench-
mark application suite. The 16 and 32 node experiments used
HPCC problem sizes of 9,000 and 10,700 respectively. Table V
shows various parameters for our platform of 16 nodes.

Fig. 12. Real vs Simulation for 16 Nodes (Failure at 20 Minutes)

Figure 12 shows the comparison between real and simulated
results for 16 nodes. The error between the real and simulated
results does not exceed 4 percent for both policies.

Fig. 13. Real vs Simulation for 32 nodes (Failure at 20 Minutes)

TABLE VI

PARAMETERS FOR REAL PLATFORM AND SIMULATION

Parameter Value
Node count 32
Time to Checkpoint 150 seconds /checkpoint
checkpoint overhead to application150 seconds/checkpoint
Restart latency 4 minute/restart
Migration overhead 1 minute/migration
Failure prediction accuracy simulated

The checkpoint and migration overheads are the average
overheads for BLCR and Live migration respectively on our
platform for 32 nodes as shown in Table VI. Figure 13 shows
the comparison between real and simulated results for 32
nodes. Since the parameters for simulation have average val-
ues for checkpoint overheads, restart latencies and migration
overheads, the results can not entirely match that of the real
ones. For instance, we took restart latency as 4 minutes in
our simulation. But it varied back and forth between different
restarts (from 1 to 8 minutes). The error between real and
simulated in this case does not exceed 8 percent.

VI. CONCLUSION

This document presents a simulator framework for the
evaluation of fault tolerance policies. We argued that there
is no one-size-fits-all FT policy, and the challenge lies in
finding/evaluating a policy that provides the best results for the
application and execution platform. To that end, we presented
our simulation architecture and algorithm. We presented a
case study based on the evaluation of standard FT policies
using failure logs taken from LLNL’s ASCI White system.
Furthermore, we illustrated how the simulator can be used
to draw conclusions about appropriate FT policies for an
application with a given dependability threshold. For instance,
our case study results indicated that the most appropriate
FT policy for the ASCI White system is a hybrid approach,
“proactive combined with reactive”.

The FT simulator complements existing work, such as
FAIL-MPI [8], by providing a tool for off-line studies of FT
policies. This eliminates the overhead and added complexity
associated with investigations that rely on actual execution for



FT policy evaluation.
In order to evaluate our simulator we compared results

from the simulator with experimental results from a 32-
node compute cluster. This comparison showed that for this
platform, results from the simulator are comparable to results
from experimentation.

The current framework is based on a default reliability
profile taken from failure logs from LLNL’s ASCI White.
However, this default profile can be replaced with other failure
rates by using alternate logs. This capability enables the study
of FT policies on different virtual platforms, with different
availability characteristics. This capability is interesting espe-
cially since the different execution platforms have different
characteristics based on their hardware, their scale, and their
available fault tolerance mechanisms (e.g. process migration
or checkpoint/restart). For computing centers that maintain
failure logs, it is also possible to provide the platform’s
characteristics to researchers that can then run simulations
with different FT policies during the exploration phase of the
research project without having to occupy the real hardware.

The current framework has been validated by comparing
simulation output with experimental results taken from both
16-node and 32-node clusters. In the worst case, the results
from the simulator differ to experimental results by 8 percent.
However, results at that scale cannot be assumed as representa-
tive for large-scale systems. On the other hand, it is difficult to
access availability statistics for large scale systems since such
logs are often considered to be sensitive data. However, we
plan to continue the validation effort using different platforms
for which we are creating such logs. We also plan to use the
simulator for the evaluation of new FT strategies.

REFERENCES

[1] K. Yelick, “The software challenges of petascale computing,” HPCwire
interview, 2006.

[2] R. Oldfield, “Investigating lightweight storage and overlay networks
for fault tolerance,” inHAPCW’06: High Availability and Performance
Computing Workshop. Santa Fe, New Mexico, USA: Held in conjunc-
tion with LACSI 2006, OCT 2006.

[3] H. D. Karatza, “Gang scheduling performance on a clusterof non-
dedicated workstations,” inSS ’02: Proceedings of the 35th Annual
Simulation Symposium. Washington, DC, USA: IEEE Computer
Society, 2002, p. 235.

[4] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette, “An evalu-
ation of parallel job scheduling for asci blue-pacific,” inSupercomputing
’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing
(CDROM). New York, NY, USA: ACM Press, 1999, p. 45.

[5] H. Rajaei, M. Dadfar, and P. Joshi, “Simulation of job scheduling for
small scale clusters,” inWSC ’06: Proceedings of the 38th conference
on Winter simulation. Winter Simulation Conference, 2006, pp. 1195–
1201.

[6] J. A. Cemisid, “A parallel simulator for task allocationin a
distributed system subject to breakdowns,” 2002. [Online]. Available:
citeseer.ist.psu.edu/506743.html

[7] R. Goswami, K.K.; Iyer, “Simulation of software behavior under hard-
ware faults,” in Fault-Tolerant Computing, 1993. FTCS-23. Digest of
Papers., The Twenty-Third Internat Symposium on, Vol., Iss., 22-24 Jun
1993, 1993, pp. 218–227.

[8] T. H. William Hoarau, Pierre Lemarinier, “Fail-mpi: How
fault-tolerant is fault-tolerant mpi,” 2006. [Online]. Available:
http://www.lri.fr/ lemarini/papers/cluster06.pdf

[9] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta, “Performance
implications of periodic checkpointing on large-scale cluster systems,”
in IPDPS ’05: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) - Workshop 18.
Washington, DC, USA: IEEE Computer Society, 2005, p. 299.2.

[10] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke, “A
simulation-based study of scheduling mechanisms for a dynamic cluster
environment,” inICS ’00: Proceedings of the 14th international confer-
ence on Supercomputing. New York, NY, USA: ACM Press, 2000, pp.
100–109.

[11] S. Gokhale, M. Lyu, and K. Trivedi, “Reliability simulation of
fault-tolerant software and systems,” 1997. [Online]. Available:
citeseer.ist.psu.edu/gokhale97reliability.html

[12] G. E. Fagg, A. Bukovsky, and J. J. Dongarra., “Harness and fault tolerant
mpi.” Parallel Computing, 2001.

[13] “Slurm: Simple linux utility for resource manage-
ment,” http://www.llnl.gov/linux/slurm/slurm.html. [Online]. Available:
http://www.llnl.gov/linux/slurm/slurm.html

[14] “Deja vu software,” http://www.californiadigital.com/sw.html. [Online].
Available: http://www.californiadigital.com/sw.html

[15] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under unix,” Proceedings of USENIX Winter1995
Technical Conference, New Orleans USA, pp. 213–224, Jan. 1995.
[Online]. Available: citeseer.ist.psu.edu/plank95libckpt.html

[16] G. Stellner, “Cocheck: Checkpointing and process migration for mpi.”
In Proceedings of the 10th International Parallel Processing Symposium
(IPPS ’96), Honolulu, 1996.

[17] P. Apparao and G. Averill, “Firmware based platform reliability,” Intel
magazine, 2005.

[18] G. Hamerly and C. Elkan, “Bayesian approaches to failure prediction for
disk drives,” In Proceedings of the eighteenth international conference
on machine learning, 2001.

[19] N. Talagala and D. Patterson, “An analysis of error behavior in a large
storage system,”Technical Report UCB/CSD-99-1042, University of
California, Berkeley, Computer Science Division, 1999.

[20] S. Chakravorty, C. Mendes, and L. Kale, “Proactive fault tolerance in
large systems.”HPCRI: 1st Workshop on High Performance Computing
Reliability Issues, in Proceedings of the 11th International Symposium
on High Performance Computer Architecture (HPCA-11). IEEECom-
puter Society, 2005.

[21] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Minimizing comple-
tion time of a program by checkpointing and rejuvenation,”Proceedings
of the 1996 ACM SIGMETRICS Conference, 1996.

[22] Y. Li and Z. Lan, “Exploit failure prediction for adaptive fault-tolerance
in cluster computing,”CCGrid, vol. 0, pp. 531–538, 2006.

[23] E. Dragovic, P. Barham, K. Fraser, S. Hand, T. H. A. Ho, R.Neuge-
bauery, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
In the Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[24] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,” in
Proceedings of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI). Boston, MA: USENIX, May 2-4, 2005.


